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Agricultural Production Systems 

Annually Planted Crops 

Maize 

Maize is an important crop in Thailand for both animal feed and consumption. With the 

exception of the south, maize is planted across every region in Thailand. Typically, 

maize is planted as a first crop annually at the beginning of the rainy season. However, 

it can also be grown as a second crop after rice on paddy fields (Ekasingh et al 2007). 

Planting is done primarily April through June and harvesting August through November 

(Figure 1). While there have been some extreme weather events that greatly diminished 

maize years for a particular period1, in general yields have grown steadily so that, 

national average yields in 2010 were approximately 80% higher than in 1985 (Figure 2).  

 

Soybeans 

Soybeans are grown across all regions in Thailand other than the south. The north is 

the largest producer where many farmers grow soybeans as a second crop in the dry 

season after growing rice in the wet season. Nationally, soy growing can be grouped 

into two planting and harvesting periods, early and late. Harvesting for the early season 

begins in late July and continues through November, at which time growers in many 

reasons begin planting for the later season. Growing in the central, eastern, and 

western regions takes place primarily in the early season, planting in June and July and 

harvesting primarily in September and October. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!For example, an extended drought from 1988 – 1992 in the northeast led to greatly diminished yields in that region 
and lower annual yields nationally for several years (Ekasingh et al 2007).!
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While soybean production does require rain in early growth stages, the water 

requirements for production are much lower than for rice (Gonsalvez). However, 

soybean production may require irrigation if it is grown in areas without sufficient early 

growing season rainfall.  

 

Cassava 

Cassava yields have been slowly rising over the past two decades, and the crop has 

recently become more important as an input to biofuel production. Cassava can be used 

or sold for consumption as well as sold as an input to animal feed or ethanol. About half 

of Thai cassava production is used domestically and half is exported. Thailand is 

typically Asia’s largest exporter of cassava (Gonzalves). One of the benefits of 

producing cassava is that it can be grown on marginal land with poor soil quality and low 

levels of rainfall. Moreover, because it is a perennial crop, it can be harvested only as 

necessary. 

 

Sugarcane 

Over the past two decades, sugar yields have slowly but steadily increased. However, 

year-to-year variation remains high. Sugarcane is increasingly being used as an input to 

biofuels rather than for consumption. Recent estimates suggest that 15-20% of sugar 

produced in Thailand is consumed domestically, while the remaining portion is exported. 

However, sugar used for export has slowly begun to be utilized for domestic biofuel 
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production (Gonzalvez,). In general, sugarcane is often grown in hotter, drier areas. In 

fact, from our data, we estimate that approximately 90% of sugar production is grown in 

rain-fed areas without access to irrigation.  
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Figure 1: Distribution of Maize Growing Season 
  

Maize 

 

Soybeans 

 

 

 
 

 

Notes: Figure shows average distribution of maize and soy planting and harvesting by month. 

Data are averaged over the years (2006 – 2010).  
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Figure 2: Long Run Yield Trends 
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Estimation Approach 

In order to evaluate the effect of weather fluctuations on maize, soy, sugar, and cassava 

yields, we apply statistical models using plausibly random variations in year-to-year weather. 

Typically, statistical studies use average growing season (or sub-season) conditions, to 

represent the weather inputs in the production function. The simplest approach estimates log 

yields as a function of mean temperature, mean precipitation, and their squares. However, 

several studies have emphasized the differential effects of non-linearities yield-weather 

relationships (e.g., Schlenker and Roberts, 2010). Consequently, much of our analysis focuses 

on estimating panel regression fixed-effect models where weather covariates are modeled as 

piece-wise linear in their effects on yield. 

    

We begin with a baseline approach of estimating the effects of weather on rice yields using a 

panel regression with a single growing season metric for each weather covariate (average 

growing season min T, max T, radiation, and precipitation). Using average seasonal 

conditions, we estimate both linear and piecewise-linear models, which are later used to 

predict yields under various climate scenarios. For some crops, (maize, cassava, sugar) we 

use GIS data2 in order to interpolate weather over planted areas and divide rainfall into two 

variables: rainfall over rain-fed cropland, and rainfall over irrigated cropland. For other crops 

(soy) we interpolate weather over the entire provinces with production data available and use a 

single rainfall variable in our analysis. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!Shapfile data was provided by the Department of Land Use 
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I. Average Growing Season Conditions 

(i) Linear Fixed-Effects Panel Model 

The first approach that we take is to estimate linear panel regression fixed-effects models for 

log yields as a function of weather metrics (estimation equations described in Technical 

Appendix). Minimum temperature, maximum temperature, and radiation are all averaged while 

the rainfall terms are summed. In addition to the separate rainfall terms, we also include their 

squares. To control for technological change and advances in farm management we estimate 

separate regressions with a linear national time trend, separate provincial level linear time 

trends, and year fixed effects, respectively. Including year fixed-effects is the most flexible 

approach, however, requires the most data as much of the year-to-year variation required to 

estimate panel models is absorbed by the fixed-effects. Consequently, the third specification 

requires larger data sets in order to have the power to detect an effect. For some crops, we do 

not have large data sets and so it is unsurprising that we generally do not find statistically 

significant results in those settings. Nonetheless, we estimate all three specifications for all 

crops. 

 

All of the regressions are weighted by average production over the study period. Due to the 

discrepancy between planted area and total production, the choice of weights ultimately 

causes us to over-weight rain-fed subsistence farms (planted area weights) or intensively 

managed irrigated farms (production weights). We estimated the model with both sets of 

weights. The results were qualitatively the same. The results included in the discussion, and 

displayed in the appendix, are estimated with average total production weights. 
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The linear panel approach has been widely applied in the literature (e.g., Peng et al 2004; 

Welch et al 2010) but requires somewhat restrictive assumptions about the linearity of the 

terms (Lobell and Burke 2010). For example, the linear panel model assumes that the effect of 

an increase from an average minimum growing season temperature of 20 to 21 degrees is the 

same as a change from 24 to 25 degrees. Consequently, in our second approach we allow for 

different weather-yield relationships across different ranges of weather covariates. 

 

ii. Piecewise-linear Panel Fixed-Effects Model 
  
The second approach involves estimating a piecewise linear function that allows for extreme 

seasonal values to have differential effects. In other words, for temperature, radiation, and 

precipitation, we relax the assumption that a single yield-covariate relationship holds across 

the range of covariate values. This approach relies on selecting cutoff points, or thresholds, 

that separate differential effects of a given weather input. Here we select thresholds by 

minimizing the in-sample RMSE. Specifically, the thresholds are chosen by looping over the 

range of observed values for each variable and selecting the threshold that best fits the data. 

The benefit of this approach is that it allows for differential effects of weather over various 

ranges, and typically represents a better fit for the data. In general, the piecewise-linear 

models have higher R2 and lower RMSE values. A similar piecewise linear modeling approach 

has previously been used to estimate the effect of extreme temperatures on wheat and maize 

yields in the United States (Schlenker 2010). The same regression weights system are also 

included for the piecewise-linear models. 
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III. Results 

Maize 

Maize yields are found to be highly sensitive to rising minimum and maximum temperatures. In 

the linear model, rising minimum temperatures are found to have the larger effect, with a one-

degree increase in average minimum temperature across the growing season reducing yields 

by  nearly 6%. Radiation is also found to be negatively associated with maize yields. In the 

linear model, maximum temperatures are weakly negatively correlated with maize yields, 

however, when we separate the range of maximum temperatures in order to estimate the 

piecewise linear model, we find that maize yields are sharply reduced by temperatures above 

33 degrees. The negative effect of temperatures is found to nearly double in most cases when 

temperature surpass this threshold. Nighttime minimum temperatures are also found to be 

significant in the non-linear model, however, the magnitude of the coefficients are significantly 

smaller (~2%). 

 

At initial low levels or rainfall, additional precipitation is found to increase yields by 7-10%. 

However, at intermediate rainfall levels, additional rainfall is found to neither hurt nor help 

maize yields. The estimated cutoff point where rainfall stops contributing to sharply increasing 

yields is low, relative to other crops (20cm), suggesting that maize yields may be more robust 

to water shortages than other crops in our study. 
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Soy  

Our results in the linear model suggest that soy yields are most sensitive to changes in 

average daily maximum temperatures, where a one-degree increase in temperatures is 

associated with a 2% decline in yields. The relationship between yields and minimum 

temperature, as well as yields and radiation, are not found to be significant. 

 

When we allow for weather effects to differ nonlinearly, we find maximum temperatures above 

34 to be extremely harmful, reducing soy yields by up to 20% from a one-degree rise in 

temperature. The effect size is significantly smaller (although still negative) when initial 

temperatures are below 34. A similar pattern of sharp drops in soy yields from temperatures 

above a given threshold was also found in soy production in the U.S. (Schemer 2010) 

 

Cassava 

Of all the crops discussed here, cassava appears to be the crop most robust to temperature 

rises (in terms of percentage yield changes). Both our linear and non-linear models suggest 

that rising minimum temperatures, as well as maximum temperatures above 23.5 degrees C, 

will actually increase yields. Rainfall in cassava growing areas is found to be beneficial (2% 

increase) for the first 160cm, but then slightly negative thereafter.  
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Sugarcane 

In the linear model we find do not find a strong relationship between minimum temperature and 

sugar yields. However, we find that higher maximum temperatures are generally associated 

with lower yields. The relationship between radiation and sugarcane yields is estimated to be 

positive in two of three specifications and negative the in the third, while rainfall effects are not 

significant.  

 

In the piecewise-linear model for sugarcane, the thresholds that fit the data best are at 23 

degrees for average minimum temperature, 34 degrees for average maximum temperature, 19 

mjd-1 for radiation, and 40cm of rainfall. Below the minimum temperature threshold, we find 

that rising temperature are associated with 5-7% higher yields. However, above 23 degrees, a 

one-degree increase in average minimum temperature is associated with 6% lower yields.  

  

Rising maximum temperatures, on the other hand, are found to be associated with lower sugar 

yields across the range of observed temperatures. However, above the thresholds the yield 

reductions are much larger. In two of three specifications we find that a one-degree increase in 

maximum temperature below 34 degrees reduces yields by 1-7%. However, above 34 degrees 

(20% of observations), we find that the effect of a one-degree increase in maximum 

temperature is nearly double, ranging from a 7-16% reduction in yields. 

 

We do not find a significant relationship between our measure of rainfall and sugar yields 

below the threshold, however, above the threshold we find that an additional 10cm of rainfall is 
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associated with 3% higher yields. These findings are consistent with a scenario where less 

than 40cm of rainfall is insufficient to improve sugar yields, however, above 40cm additional 

rainfall results in higher yields. 

 

In summary, we find that rising maximum temperatures are likely to hurt sugar yields, however, 

above 34 degrees there is a sharp drop-off in yields. We find that rising minimum temperatures 

increase sugar yields, up to 23 degrees, and above the threshold reduce yields. We find the 

same increasing and then decreasing relationship with radiation. Finally, we estimate a 

positive relationship between sugar yields and rainfall above 40cm, but an insignificant 

relationship below 40cm.  
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Yields Under Future Climate Scenarios 

In order to evaluate the potential impacts of climate change on the rice sector in 

Thailand, we use the models developed in the previous section to predict yields under 

various climate scenarios. First, future conditions are estimated for each GCM under 

each of the three economic scenarios (A1B, A2, B1). Projected changes in temperature 

(precipitation) are added (multiplied) to historical 30-year averages in order to predict 

future climate conditions. These projections are then plugged into the statistical yield 

models to predict decadal yields up to 2060 under climate change. As a baseline, we 

estimate yield potential under no climate change. These estimates take the average 

weather conditions over the past 30 years and use them to forecast future yields 

assuming a constant rate of technological progress. The yield potential under no climate 

change is then subtracted out from the climate change yield forecasts in order to 

estimate relative losses. In other words, our estimates compare forecasted rice yields 

under the various climate change scenarios to rice yields forecast along the present 

trend. We take this approach to estimate potential climate impacts for each of our 

models, with predicted climate change conditions for each of the 18 GCM models, under 

each of the three economic scenarios. We then calculate the median yield predictions 

across GCM models to represent our estimates for each of the three climate scenarios.  
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Yield Forecast Results 

 

Maize 

Under the linear model, maize yields are found to decrease steadily each decade with 

approximately 5-10% losses predicted by 2050. All temperature and radiation covariates 

are found to be negatively associated with higher maize yields in the linear model and 

rainfall is not found to be significant. In the non-linear model, we find similar results, 

where all temperature and radiation variables are found to be negatively associated with 

higher maize yields. In these specifications, additional rainfall is found to be highly 

beneficial (+9% in yields) when rainfall levels are initially low. However, at higher levels 

of seasonal rainfall, additional rainfall is not found to be significantly beneficial. 

Moreover, rainfall above the upper threshold of 170cm is found to be negatively 

associated with maize yields. Collectively, this suggests that maize is one of the more 

robust crops with respect to water shortages.  

 

Soybean 

Under both models, median losses of 3-5% are forecast by 2050. The linear 

specifications predict that losses are incurred immediately. However, in the non-linear 

model, yields are forecast to initially decrease with rising temperatures, but to sharply 

decrease after temperatures cross the respective thresholds. The two-part response is 

predicted because temperatures under the thresholds are found to be positively 

associated with higher yields, however, once temperatures cross the thresholds, yields 

begin to decline sharply, with a one-degree increase in maximum temperature over 34 

degrees reducing yields by 5%. 
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Cassava 

Under the linear model we forecast higher future yields (up to 5% by 2050) relative to 

baseline forecasts under no climate change. This is because our linear model finds that 

rising minimum and maximum temperatures are both positively associated with higher 

yields. Under the non-linear model, we find similar results, with a wider variety for 

predictions. Both maximum and minimum temperatures are found to be positively 

associated with yields, although higher radiation levels are found to be negatively 

associated with yields. In addition, lower levels of rainfall are found to reduce potential 

cassava yields. However, in most cases the positive temperature effects around found 

to outweigh the negative effects from reductions in rainfall. That being said, in cases of 

extreme water shortages, cassava yields are vulnerable to major losses. Compared to 

rice and tree crops though, cassava is relatively robust to water shortages. 

 

Sugar 

Under the linear models, we find that sugar yield losses under climate change are 

minimal. Relative to baseline trends, the linear models predict that median losses will be 

less than 1%, with about one-third of sugar areas gaining from changing climate. 

However, under the piece-wise median linear models yields losses exceed 1%, with 

some models predicting 2% losses by 2050. The reason for the different finding under 

the non-linear model is that we find sharp yield declines with maximum temperatures 

over 34.5 degrees, and minimum temperatures over 23 degrees. Above the maximum 

temperature threshold, we find that losses associated with a one-degree increase in 

temperature double. Above the minimum temperature threshold, we find that yield 

changes associated with rising minimum temperature switch from being positive to 
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negative. Consequently, taking into account the differential yield effects over different 

ranges of temperatures, we predict a 1-2% decline in sugar yields by 2050, relative to 

baseline yields forecast under current conditions. 

  
Figure 3: Forecasted Change in Maize Yields  

Under A1B Scenario 
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Figure 4: Forecasted Change in Maize Yields 
Under A2 Scenario 
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Figure 5: Forecasted Change in Maize Yields 
Under B1 Scenario 
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Figure 6: Forecasted Change in Soy Yields 
Under A1B Scenario 
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Figure 7: Forecasted Change in Soy Yields 
Under A2 Scenario 
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Figure 8: Forecasted Change in Cassava Yields 

Under A1B Climate Scenario 
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Figure 9: Forecasted Change in Cassava Yields 
Under B1 Climate Scenario 
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Figure 10: Forecasted Change in Sugar Yields 
Under A1B Climate Scenario 

 
 

 



!

!26 

Figure 11: Forecasted Change in Sugar Yields 
Under B1 Climate Scenario 
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Figure 12: Forecasted Change in Sugar Yields 
Under A2 Climate Scenario 
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Figure 13: Maize Growing Area Forecast to be Above 

Maximum Temperature Threshold 
 

 
 
 
Notes: Figure shows the maize growing areas that are predicted to have average daily 
maximum temperatures above the estimated 33-degree threshold during the current maize 
growing season. Above the threshold, our models predict sharp declines in yields. 
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Figure 14: Maize Growing Area Forecast to be Above 

Maximum Temperature Threshold 
 

 
 
 
Notes: Figure shows the maize growing areas that are predicted to have average daily 
maximum temperatures above the estimated 33-degree threshold during the current maize 
growing season. Above the threshold, our models predict sharp declines in yields. 
 



!

!30 

References 

Auffhammer, M., S. Hsiang, W. Schlenker, and A. Sobel, “Global climate models and  
climate data: A user guide for economists,” Technical Report, Working paper 
2011. 

 
Burke, M., J. Dykema, D. Lobell, E. Miguel, and S. Satyanath, “Incorporating Climate  

Uncertainty into Estimates of Climate Change Impacts, with Applications to US 
and African Agriculture,” Technical Report, National Bureau of Economic 
Research 2011. 

 

Chaowiwat, W. and S. Koontanakulvong ”Technical Report : GCM data 
comparison and its application to water disaster adaptation measures in 
Thailand”. Water Resources System Research Unit. Faculty of Engineering, 
Chulalongkorn University. March 2011. 

CIAT, ”Thai Agriculture and Climate Change”. Report prepared for GIZ and OAE. 
August 2012. 

 
Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, R. Held, R. Jones, 
R.K. Kolli, WK Kwon, R. Laprise et al., “Regional climate projections,” Climate  

Change, 2007: The Physical Science Basis. Contribution of Working group I to 
the Fourth Assessment Report of the Intergovernmental Panel on Climate 
Change, University Press, Cambridge, Chapter 11, 2007, pp. 847–940. 

 
Ekasingh, B., P. Gypmantasiri, K. Thong Ngam, and P. Krudloyma, “Maize in  

Thailand:Production systems, constraints, and research priorities”, Climate, 
2007. 

Hewitson, BC and RG Crane, “Climate downscaling: techniques and application,”  
Climate Research, 1996, 7, 85–95. 

 
IPCC, “Summary for Policymakers,” in S. Solomon, D. Qin, M. Manning, Z. Chen, M.  

Marquis, K.B. Averyt, M.Tignor, and H.L. Miller, eds., Climate Change 2007: The 
Physical Science Basis. Contribution of Working Group I to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate Change., 
Cambridge University Press, Cambridge, United Kingdom and New York, NY, 
USA., 2007. 

 
IPCC , ‘‘Fourth Assessment Report of the Intergovernmental Panel on Climate Change:  

The Impacts, Adaptation and Vulnerability (Working Group III).’’ Cambridge 
University Press, New York. 2007. 

 



!

!31 

Pandey, S., Bhandari, H., Ding, S., Prapertchob, P., Sharan, R., Naik, D., Taunk, S. 
K., and Preechajarn S, Prasertsri P, Kunassirirat M. Thailand bio-fuels annual, 2007. 
USDA Gain report TH7070; 2007. 

 

Randall, D.A., R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. 
Pitman, J. Shukla, J. Srinivasan, R.J. Stouffer, A. Sumi and K.E. Taylor: Cilmate  

Models and Their Evaluation. In: Climate Change 2007: The Physical Science 
Basis. Contribution of Working Group I to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change , 2007. [Solomon, S., D. Qin, M. 
Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. 
Cambridge University Press, Cambridge, United Kingdom and New York, NY, 
USA. 

 
Schlenker, W. and M.J. Roberts, “Nonlinear temperature effects indicate severe  

damages to US crop yields under climate change,” Proceedings of the National 
Academy of Sciences, 2009, 106 (37), 15594. 

 
  



!

!32 

Annex 1: Tables 
 
 

Table A2.7: Linear Seasonal Average Panel Model Results: 
 

Maize 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Significance levels indicated by ***0.01, **0.05, *0.1 
Regressions are weighted by average production over the study period. 

 
  

 (1) (2) (3) 
    

Min Temp  -0.061*** -0.061*** -0.017 
(deg C) (0.017) (0.014) (0.027) 

    
Max Temp  -0.013 -0.015 -0.021 

(deg C) (0.010) (0.010) (0.025) 
    

Radiation  -0.032*** -0.031*** 0.013 
(mjd-1) (0.010) (0.010) (0.015) 

    
Rainfall   -0.002 -0.001 -0.014 

(10 cm rain-fed) (0.003) (0.003) (0.009) 
    

Rainfall2  -0.000 -0.000 0.000** 
(10 cm rain-fed) (0.000) (0.000) (0.000) 

    
Fixed Effects Province Province Province, Year 
Time Trend National Provincial -- 

Mean Log Yield 6.229 6.229 6.229 
No Obs 1043 1043 1043 

R2 0.763 0.801 0.821 



!

!33 

 
Table A2.7: Linear Seasonal Average Panel Model Results: 

  
Soybean 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Significance levels indicated by ***0.01, **0.05, *0.1 
Regressions are weighted by average production over the study period. 

 

 (1) (2) (3) 
    

Min Temp  -0.005 -0.009 -0.002 
(deg C) (0.009) (0.010) (0.019) 

    
Max Temp -0.020** -0.019** -0.015 

(deg C) (0.008) (0.008) (0.019) 
    

Radiation 0.013 0.015 0.010 
(mjd-1) (0.012) (0.012) (0.018) 

    
Rainfall  0.007* 0.007* -0.009 

(10 cm rain-fed) (0.004) (0.004) (0.008) 
    

Rainfall2 -0.000 -0.000 0.000 
(10 cm rain-fed) (0.000) (0.000) (0.000) 

    
Fixed Effects Province Province Province, Year 
Time Trend National Provincial -- 

Mean Log Yield 5.418 5.418 5.418 
No Obs 989 989 989 

R2 0.531 0.584 0.574 
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Table A2.7: Linear Seasonal Average Panel Model Results: 
 

Cassava 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Significance levels indicated by ***0.01, **0.05, *0.1 
Regressions are weighted by average production over the study period. 

 
  

 (1) (2) (3) 
    

Min Temp 0.046*** 0.051*** 0.001 
(deg C) (0.009) (0.008) (0.010) 

    
Max Temp 0.022*** 0.024*** -0.005 

(deg C) (0.007) (0.007) (0.017) 
    

Radiation -0.052*** -0.053*** 0.006 
(mjd-1) (0.007) (0.007) (0.011) 

    
Rainfall 0.020*** 0.020*** 0.009** 

(10 cm rain-fed) (0.002) (0.002) (0.004) 
    

Rainfall2 -0.000*** -0.000*** -0.000** 
(10 cm rain-fed) (0.000) (0.000) (0.000) 

    
Fixed Effects Province Province Province, Year 
Time Trend National Provincial -- 

Mean Log Yield 7.871 7.871 7.871 
No Obs 1179 1179 1179 

R2 0.585 0.602 0.871 
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Table A2.7: Linear Seasonal Average Panel Model Results: 

 
Sugar 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Significance levels indicated by ***0.01, **0.05, *0.1 
Regressions are weighted by average production over the study period. 

 
  

 (1) (2) (3) 
    

Min Temp  0.000 0.008 0.012 
(deg C) (0.018) (0.022) (0.008) 

    
Max Temp  -0.073*** -0.079*** 0.002 

(deg C) (0.013) (0.015) (0.007) 
    

Radiation  0.025*** 0.029*** -0.035** 
(mjd-1) (0.007) (0.006) (0.016) 

    
Rainfall -0.023 -0.023 0.011 

(10 cm rain-fed) (0.018) (0.017) (0.015) 
    

Rainfall2 0.004* 0.004* -0.000 
(10 cm rain-fed) (0.002) (0.002) (0.002) 

    
Fixed Effects Province Province Province, Year 
Time Trend National Provincial -- 

Mean Log Yield 9.096 9.096 9.096 
No Obs 989 989 989 

R2 0.276 0.315 0.766 
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Table A

2: Sum
m

ary of Thresholds Selected for Piecew
ise-Linear M

odel 

 N
otes: Table show

s sum
m

ary of selected thresholds for each w
eather covariate. The thresholds are selected by looping over possible values 

and selecting the thresholds that m
inim

izes in-sam
ple R

M
SE. The relationship betw

een crop yields and the w
eather covariates are then 

estim
ated separately over the ranges above and below

 the endogenously selected thresholds. The final colum
n com

pares the average R
M

SE 

for the piece-w
ise linear specifications relative to the R

M
SE for the corresponding linear m

odels w
ith the sam

e trend controls. Trend controls 

vary across specifications. In specification (1) w
e include a single linear national trend. In specification (2) w

e include separate linear trends for 

each province. In specification (3), w
e estim

ate a m
ore flexible form

 w
here w

e control for trends by including year fixed-effects. 

 

Crop 

M
inim

um
 Tem

p 
M

axim
um

 Tem
p 

Radiation 
Precipitation 

Nonlinear M
odel 

in-sam
ple 

R
M

SE R
eduction 

(1)  
(2) 

(3) 
(1) 

(2) 
(3) 

(1) 
(2) 

(3) 
(1) 

(2) 
(3) 

M
aize 

22 
22 

23 
32 

32 
33 

17 
17 

19 
2 

2 
1 

2%
 

Soy 
24 

24 
22 

32 
32 

34 
16 

16 
16 

17 
17 

4 
3%

 

Cassava 
22 

22 
22 

30 
30 

35 
19 

19 
19 

16 
16 

17 
1%

 

 
 Sugar 

20 
23 

22 
34 

35 
35 

19 
19 

19 
6 

4 
4 

3%
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Table A2.8: Piecewise-linear Seasonal Average Panel Model Results: 
 

Maize 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Significance levels indicated by ***0.01, **0.05, *0.1 
Regressions are weighted by average production over the study period. 

 
  

 (1) (2) (3) 
    

Min Temp (< 22) -0.010 -0.028 0.029 
(deg C) (0.020) (0.018) (0.023) 

    
Min Temp (>22) -0.015*** -0.013*** -0.079*** 

(deg C) (0.024) (0.023) (0.025) 
    

Max Temp (<33) -0.031*** -0.028*** -0.068** 
(deg C) (0.011) (0.010) (0.032) 

    
Max Temp (>33) -0.069*** -0.055 -0.125*** 

(deg C) (0.017) (0.016) (0.021) 
    

Radiation (<17) 0.035 0.043* 0.045** 
(mjd-1) (0.030) (0.022) (0.019) 

    
Radiation (>17) -0.036*** -0.035*** 0.008 

(mjd-1) (0.011) (0.011) (0.016) 
    

Rainfall (< 2) 0.108*** 0.091*** 0.073*** 
(10 cm rain-fed) (0.029) (0.030) (0.026) 

    
Rainfall (2<r<17) 0.000 -0.001 -0.000 
(10 cm rain-fed) (0.001) (0.001) (0.001) 

    
Rainfall  (>17) -0.004 -0.006** -0.008** 

(10 cm rain-fed) (0.003) (0.003) (0.004) 
    

Fixed Effects Province Province Province, Year 
Time Trend National Provincial -- 

Mean Log Yield 6.239 6.239 6.239 
No Obs 1043 1043 1043 

R2 0.775 0.809 0.827 
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Table A2.7: Piecewise-linear Seasonal Average Panel Model Results: 

 
Soybean 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Significance levels indicated by ***0.01, **0.05, *0.1 
Regressions are weighted by average production over the study period. 

 

 (1) (2) (3) 
    

Min Temp (< 24) 0.003 -0.001 0.003 
(deg C) (0.012) (0.013) (0.019) 

    
Min Temp (>24) -0.016* -0.014 -0.012 

(deg C) (0.009) (0.009) (0.020) 
    

Max Temp (<34) 0.020 0.067*** 0.043 
(deg C) (0.030) (0.018) (0.040) 

    
Max Temp (>34) -0.184*** -0.197*** -0.061* 

(deg C) (0.033) (0.032) (0.035) 
    

Radiation (>16) -0.046** -0.038* -0.035 
(mjd-1) (0.020) (0.019) (0.025) 

    
Radiation (<16) 0.023* 0.024* 0.022 

(mjd-1) (0.013) (0.014) (0.019) 
    

Rainfall (< 17) 0.004 0.004 -0.008 
(10 cm rain-fed) (0.003) (0.003) (0.005) 

    
Rainfall  (>17) -0.001 0.000 -0.003 

(10 cm rain-fed) (0.004) (0.004) (0.006) 
    

Fixed Effects Province Province Province, Year 
Time Trend National Provincial -- 

Mean Log Yield 5.418 5.418 5.418 
No Obs 989 989 989 

R2 0.543 0.596 0.579 
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Table A2.9: Piecewise-linear Seasonal Average Panel Model Results: 
 

Cassava 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Significance levels indicated by ***0.01, **0.05, *0.1 
Regressions are weighted by average production over the study period. 

 
  

 (1) (2) (3) 
    

Min Temp (< 22) 0.025*** 0.034*** 0.022** 
(deg C) (0.008) (0.007) (0.010) 

    
Min Temp (>22) 0.069*** 0.078*** 0.010 

(deg C) (0.019) (0.017) (0.013) 
    

Max Temp (<32.5) -0.012 -0.032 -0.027 
(deg C) (0.021) (0.030) (0.038) 

    
Max Temp (>32.5) 0.018** 0.020** -0.006 

(deg C) (0.007) (0.008) (0.016) 
    

Radiation (<19) -0.056*** -0.056*** -0.004 
(mjd-1) (0.006) (0.006) (0.011) 

    
Radiation (>19) 0.005 0.006 0.058*** 

(mjd-1) (0.020) (0.021) (0.014) 
    

Rainfall (< 16) 0.012*** 0.012*** 0.011*** 
(10 cm rain-fed) (0.001) (0.001) (0.003) 

    
Rainfall  (>16) -0.008*** -0.008*** -0.001 

(10 cm rain-fed) (0.001) (0.001) (0.002) 
    

Fixed Effects Province Province Province, Year 
Time Trend National Provincial -- 

Mean Log Yield 7.871 7.871 7.871 
No Obs 1179 1179 1179 

R2 0.591 0.607 0.875 
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Table A2.4: Piecewise-linear Seasonal Average Panel Model Results: 
 

Sugar 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Significance levels indicated by ***0.01, **0.05, *0.1 
Regressions are weighted by average production over the study period. 

 
 

 (1) (2) (3) 
    

Min Temp (< 23) 0.056** 0.071** 0.021 
(deg C) (0.024) (0.028) (0.015) 

    
Min Temp (>23) -0.062** -0.061** -0.001 

(deg C) (0.026) (0.029) (0.015) 
    

Max Temp (<34.5) -0.065*** -0.078*** 0.011 
(deg C) (0.015) (0.019) (0.010) 

    
Max Temp (>34.5) -0.155*** -0.144*** -0.070*** 

(deg C) (0.031) (0.030) (0.018) 
    

Radiation (<19) 0.032** 0.036*** 0.029* 
(mjd-1) (0.012) (0.011) (0.017) 

    
Radiation (>19) -0.006 -0.005 -0.067** 

(mjd-1) (0.031) (0.031) (0.032) 
    

Rainfall (< 4) -0.006 -0.006 0.005 
(10 cm rain-fed) (0.008) (0.008) (0.006) 

    
Rainfall  (>4) 0.030*** 0.027** 0.014 

(10 cm rain-fed) (0.008) (0.011) (0.009) 
    

Fixed Effects Province Province Province, Year 
Time Trend National Provincial -- 

Mean Log Yield 9.096 9.096 9.096 
No Obs 989 989 989 

R2 0.304 0.343 0.772 


