India's Biofuel Strategy: Global Dimensions

David Roland-Holst, UC Berkeley Herath Gunatilake and Guntur Sugiyarto, ADB Jenn Baka, Yale

27 September 2010

- 1. Competing Narratives on Fuel and Food
- 2. Energy Trends
- 3. Food Trends
- 4. Scenarios for India

Competing Narratives

Energy and food are both essential commodities, but they are subject to different policy narratives:

- Global energy demand trends are seen as and unsustainable byproduct of affluence
- Food demand is seen primarily in terms of security for the poor
- Biofuel presents the two as competitors for agricultural resources, particularly from a North-South perspective
- Our research, however, suggests that emerging markets will be the catalyst accelerating both demand trends over the next generation
- Moreover, it will be neither the rich nor poor who drive this process, but a global middle class

Energy and Affluence

Per capita income and energy use for 118 countries.

27 September 2010

Food and Vulnerability

2005 Per Capita (PPP) Income in Thousands

27 September 2010

Source: Authors' estimates, from national data sources. Roland-Holst 5

Food Vulnerability is Greater than Energy Vulnerability

Food/Energy Expenditure Ratios for 77 countries.

27 September 2010

Energy Trends: Emerging Markets

- The BRICS story from an energy perspective
- The Goldman projections show aggregate growth
- With GSPovertaking by 2040

Global Energy Fuel Demand Business as Usual

China and India in a Global Context

(monthly household income per capita, 1993PPP\$)

Whither Energy Prices? Fuel Composition of New Energy Demand

Global Primary Energy Demand

Rising Import Dependence Average Annual Net Imports, Oil and

Increasing Monopoly Power Oil Production by Source

Food Demand: Differing Perspectives on Asia

27 September 2010

Asian Regional AgroFood Imports

Global Agrofood Demand

Green revolution productivity trend.

Meat: Another sentinel product **Pork and Poultry**

Million metric tons

All Asia Pork and Poultry

Clearly, the impact of any imbalance in China's meat economy will fall primarily on the price system. Million metric tons

China's Soy Demand

Source: USDA.

Trade: China's Soy Tsunami

Scenarios for Energy and Food Security

- S1: Global oil and gas prices rise 50% over the period 2010-2030.
- S2: Scenario 1 with biodiesel and ethanol standards (USA, EUR, IND)
- S3: Scenario 2 with 1 percent annual energy efficiency gains.
- S4: Scenario 3 with 1 percent agrofood productivity growth.

Macroeconomic Results

	Oil Price	Biodiesel	Ethanol	EE	Ag Prod
	S1	S2	S3	S4	S5
Real GDP	-4.8%	1.1%	1.3%	0.9%	2.9%
Real Cons	-6.6%	2.1%	2.4%	3.4%	6.2%
Exports	-4.1%	-0.9%	-1.0%	2.4%	1.3%
Imports	-9.3%	0.0%	-0.1%	2.7%	3.2%
Agfood Imports	-8.3%	2.3%	3.0%	9.5%	-29.5%
Energy Imports	-27.6%	-10.6%	-12.5%	-19.0%	-13.0%
GDPPC_PPP	-4.1%	-0.9%	-0.9%	1.3%	5.1%
СРІ	3.0%	0.7%	0.8%	4.6%	1.7%
Food CPI	-2.6%	0.4%	0.6%	1.9%	-11.9%
Energy CPI	48.6%	5.4%	5.8%	-9.0%	0.4%
Real HH Income	-4.7%	0.9%	1.1%	2.3%	4.2%
Real Wages	-5.9%	0.4%	0.7%	3.7%	7.9%
GHG Emissions	-13.2%	-6.7%	-7.5%	-18.1%	-15.6%

27 September 2010

% Change from 2030 Baseline % Change from S1 Roland-Holst 23 % Change from S1

Conclusions: Food or Energy Security?

- For countries like India, who have low income majorities and are price takers in global energy markets, food price risk is more important than energy price risk – two different policy approaches apply
 - Countries with significant domestic biofuel potential can consider supply side solutions to energy needs
 - Others should consider demand side solutions rather than diverting agrofood potential to energy production
- For the latter group, priority should be given to offsetting livelihood risk from food prices, promoting agrofood productivity to reduce food costs and, indirectly, any adverse real income effect from higher energy prices.

Thank you

27 September 2010

A new global database including:

- ➢ GTAP-7 complete, 113 countries, 57 sectors
- Energy disaggregation 13 sources
- Emissions data 14 categories
- Income distribution deciles
- Demographic data population by age (young, working, retired)

Energy Disaggregation

- 1. Coal
- 2. Oil
- 3. Gas
- 4. Biodiesel
- 5. Ethanol1 Sugar based
- 6. Ethanol2 Starch based
- 7. Nuclear
- 8. Hydro
- 9. Biomass and Waste
- 10. Wind
- 11. Geothermal
- 12. Solar
- 13. Tide and Wave

Emission Categories

Air Pollutants

1.	Carbon Dioxide	CO2
2.	Suspended particulates	PART
3.	Sulfur dioxide	SO2
4.	Nitrogen dioxide	NO2
5.	Volatile organic compounds VOC	
6.	Carbon monoxide CO	
7.	Toxic air index	TOXAIR
8.	Biological air index	BIOAIR
Water Pollutants		
9.	Biochemical oxygen demand	BOD
10.	Total suspended solids	TSS
11.	Toxic water index	TOXWAT
12.	Biological water index	BIOWAT
Land Pollutants		
13.	Toxic land index	TOXSOL
14.	Biological land index	BIOSOL

27 September 2010

Emission Paths for OECD and non-OECD

