Cap and Trade and Structural Transition in the California Economy

A Briefing for the California Environmental Protection Agency on Results from the Berkeley Energy and Resources Model

David Roland-Holst dwrh@are.berkeley.edu

23 February 2007

Research supported by the Energy Foundation

Objectives

 Estimate aggregate state impacts of AB32 and related policies.

2. Identify adjustment challenges for leading industries.

AB32

- The "California Global Warming Solutions Act of 2006," is the first law to comprehensively limit greenhouse gas (GHG) emissions at the state level.
- The bill's stated objective is to return GHG emissions to 1990 levels, using some kind of cap and trade mechanism.
- Negotiations on the precise mechanisms will take about two years, but salient features are already discernable.

Three Economic Principles

- 1. Demand Shifting: New demand for California goods and services.
- 2. Benefits Exceed Costs: Direct adjustment costs for some stakeholders, but these are outweighed by indirect statewide benefits.
- 3. Early Action Pays: Conversion costs are fixed, but efficiency benefits compound like interest.

Scenarios for Climate Action

- Baseline (no emission reduction target) [1]
- 8 CAT policies (direct regulation) [2]

CAT policies plus emission cap to meet remainder of 2020 target

- Industries in Group 1 covered by an aggregate cap [3]
- Industries in Groups 1 and 2 covered by an aggregate cap [4]
- Industries in Groups 1, 2 and 3 covered by an aggregate cap [5]
- CAT policies plus emission cap on industries in Groups 1, 2 and 3 with revenues recycled into innovation investment [6]
- CAT policies plus emission cap on all emitting industries with revenues recycled into innovation investment [7]

23 February 2007

Aggregate Results

	Scenario 2	3	4	5	6	7
	CAT	Group1	Group12	Group123	G123Gr	AllIn
Total GHG*	-13	-28	-28	-28	-28	-28
Household GHG*	-32	-32	-32	-32	-31	-30
Industry GHG*	-3	-26	-26	-26	-26	-27
Annual GSP Growth*	2.4	2.4	2.4	2.4	3.1	4.7
Employment*	.10	.06	.08	.08	.44	1.07
	*Percent chan	ige from Ba	seline scena	ario in the yea	ar 2020.	
Jobs (thousands)	20	13	16	17	89	219
Percent of GHG Target	47	101	100	100	100	100

Macroeconomic Impacts of 8 CAT policies plus a 2020 GHG Cap

Annual Impact	8 CAT policies + Cap	8 CAT policies + Cap w/Innovation Incentives	
Gross State Product (2006 dollars)	+\$60 Billion	+\$74 Billion	
% change from 2020 baseline	(+2.4%)	(+3.1%)	
Employment (thousands)	+17	+ 89	
% change from 2020 baseline	(+.08%)	(+0.44%)	

Preliminary Conclusions

- California's GHG targets are attainable, but too ambitious to be met by voluntary initiative. Policy action to meet the targets should be relatively inclusive, with mandatory participation by all sectors representing a significant share of emissions.
- An Emissions Cap, supported by regulatory and market-based implementation programs, can return California's GHG emissions to 1990 levels by 2020 and stimulate the state economy.
- Climate policies that create direct incentives for industries to invest in new technologies can provide additional stimulus for new employment and growth.

23 February 2007

Industry Level Adjustments

- Individual industries will experience significant adjustment challenges, particularly electric power, cement, and oil refining.
- Depending upon the design of the cap and trade system, their response can facilitate or inhibit state economic growth.

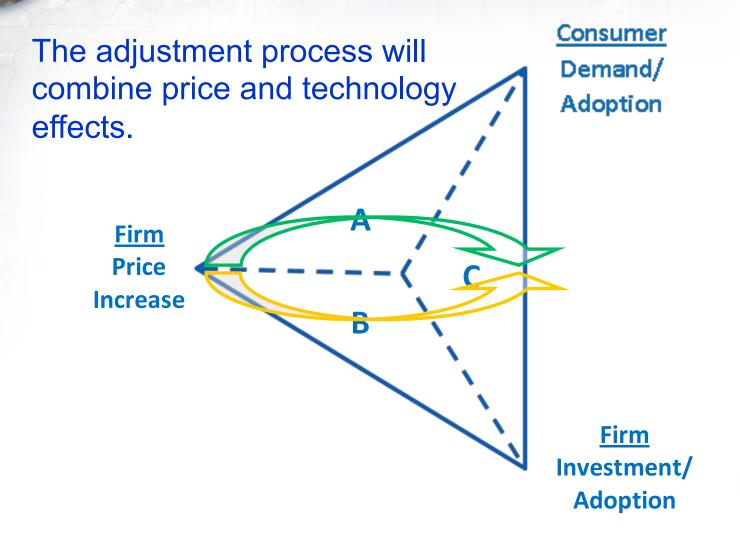
Potential Target Sectors

- Group 1: First Tier Emitters A04DistElc Electricity Suppliers A17OilRef Oil and Gas Refineries A20Cement
- Group 2: Second Tier Emitters
 A01Agric Agriculture
 A12Constr Transport Infrastructure
 A15WoodPlp Wood, Pulp, and Paper
 A18Chemicl Chemicals
 A21Metal Metal Manufacture and Fab.
 A22Aluminm Aluminium Production

• Group3:	Other Industry Emitters
A02Cattle	Cattle Production
A03Dairy	Dairy Production
A04Forest	Forestry, Fishery, Mining, Quarrying
A05OilGas	Oil and Gas Extraction
A06OthPrim	Other Primary Activities
A07DistElec	Generation and Distribution of Electricity
A08DistGas	Natural Gas Distribution
A09DistOth	Water, Sewage, Steam
A10ConRes	Residential Construction
A11ConNRes	Non-Residential Construction
A13FoodPrc	Food Processing
A14TxtAprl	Textiles and Apparel
A16PapPrnt	Printing and Publishing
A19Pharma	Pharmaceuticals
A23Machnry	General Machinery
A24AirCon	Air Conditioner, Refrigerator, Manufacturing
A25SemiCon	Semiconductors
A26ElecApp	Electrical Appliances
A27Autos	Automobiles and Light Trucks
A28OthVeh	Other Vehicle Manufacturing
A29AeroMfg	Aeroplane and Aerospace Manufacturing
A30OthInd	Other Industry

Implied Annual Emission Reductions Could be Substantial

Sc	cenario 2	3	4	5	6	7
Sector	CAT	Group1	Group12	Group123	G123Gr	AllIn
A01Agric	.00	01	-3.64	-2.95	-2.94	-2.36
A02Cattle	.00	01	01	-2.95	-2.95	-2.37
A03Dairy	47	48	48	-3.16	-3.15	-2.60
A04Forest	.00	01	01	-2.95	-2.93	-2.27
A05OilGas	.00	03	01	-2.96	-2.93	-2.30
A06OthPrim	.00	01	01	-2.96	-2.90	-2.50
A07DistElec	.00	-4.40	-3.61	-2.93	-2.97	-2.42
A08DistGas	.00	01	.00	-2.95	-3.00	-2.52
A09DistOth	.00	01	01	-2.96	-2.89	-2.21
A10ConRes	.00	01	.00	-2.95	-2.85	-2.28
A11ConNRes	.00	.00	.00	-2.95	-2.87	-2.24
A12Constr	.00	01	-3.65	-2.96	-2.86	-2.35
A13FoodPrc	.00	01	.00	-2.96	-3.00	-2.54
A14TxtAprl	.00	01	.00	-2.95	-2.90	-2.48
A15WoodPlp	.00	01	-3.65	-2.96	-2.85	-2.17
A16PapPrnt	.00	01	.00	-2.95	-2.93	-2.44
A17OilRef	.00	-4.35	-3.58	-2.90	-2.92	-2.34
A18Chemicl	.00	01	-3.65	-2.95	-2.91	-2.30
A19Pharma	.00	01	.00	-2.95	-2.95	-2.41
A20Cement	35	-4.54	-3.78	-3.13	-3.09	-2.60
A21Metal	.00	01	-3.65	-2.96	-2.80	-2.08
A22Aluminm	.00	01	-3.65	-2.96	-2.82	-2.16
A23Machnry	.00	01	.00	-2.95	-2.90	-2.48
A24AirCon	-4.74	-4.74	-4.74	-5.65	-5.62	-5.45
A25SemiCon	-4.44	-4.45	-4.45	-5.47	-5.45	-5.29
A26ElecApp	.00	.00	.00	-2.95	-2.98	-2.82
A27Autos	.00	.00	.00	-2.95	-2.99	-2.73
A28OthVeh	.00	01	.00	-2.95	-2.87	-2.32
A29AeroMfg	.00	.00	.00	-2.95	-2.95	-2.70
A30OthInd	.00	01	.00	-2.95	-2.87	-2.32

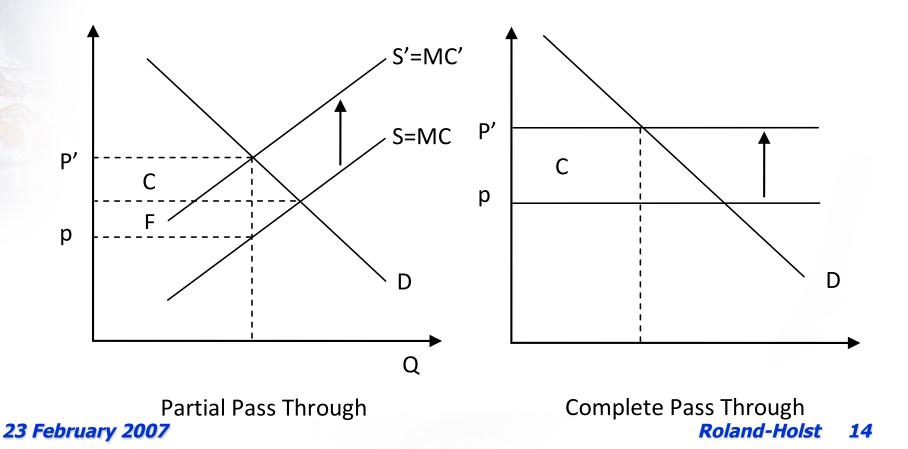

23 February 2007

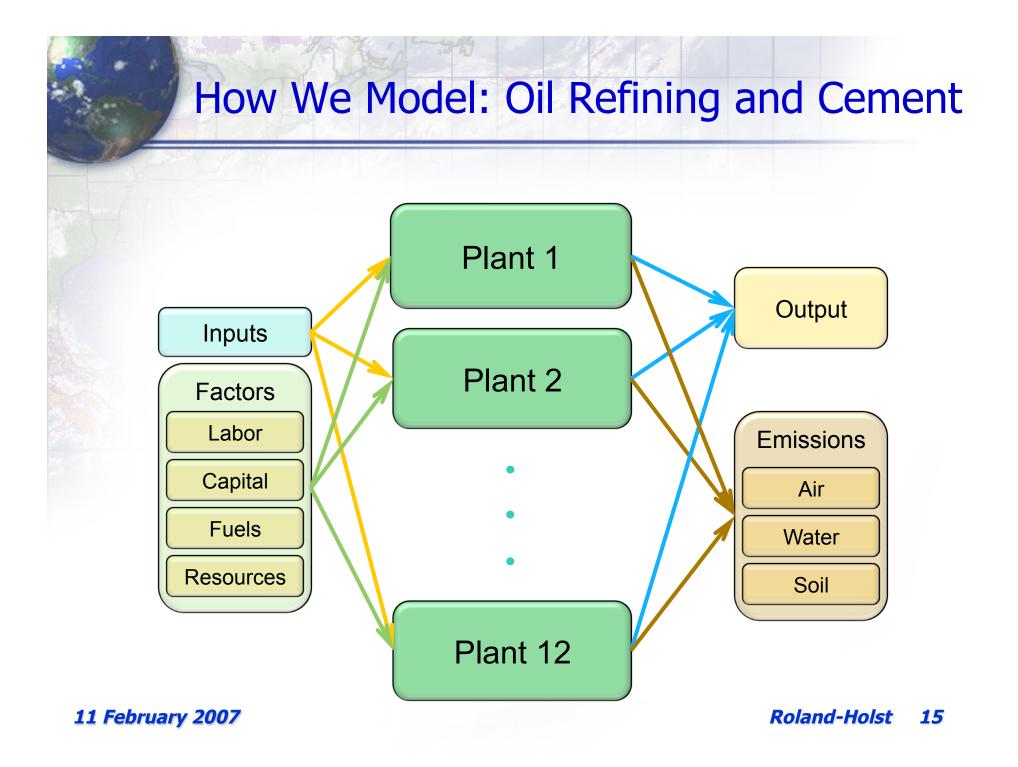
Structural Transition I

Economic Structure defined:

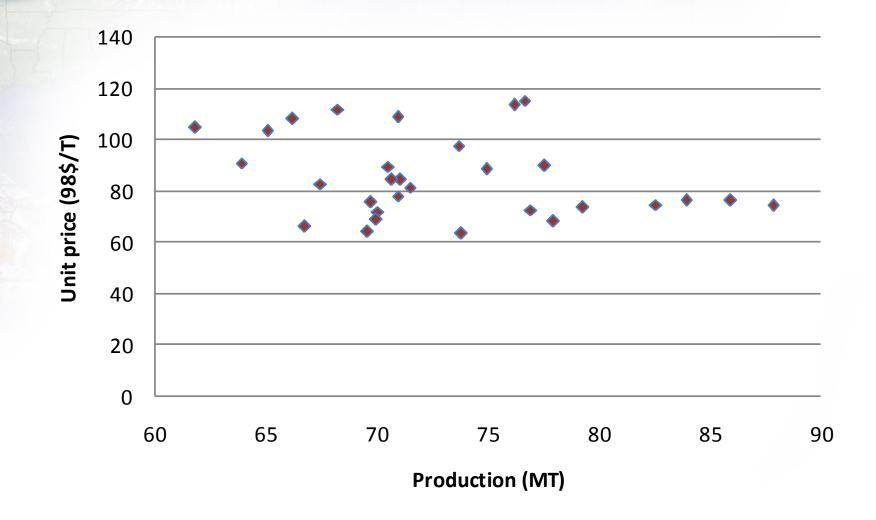
Firms, technology, and supply
 Consumers, taste, and demand
 Market prices and transactions
 Government policy

Structural Transition II

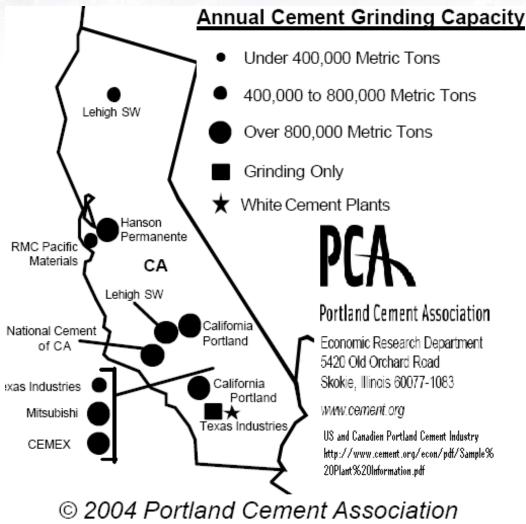



23 February 2007

Roland-Holst 13


Price Effects Depend on Supply

Cost-price pass through depends on industry supply curves.



Cement Industry Supply, 1970-2000

Roland-Holst 16

California Cement Production Facilities and Levels

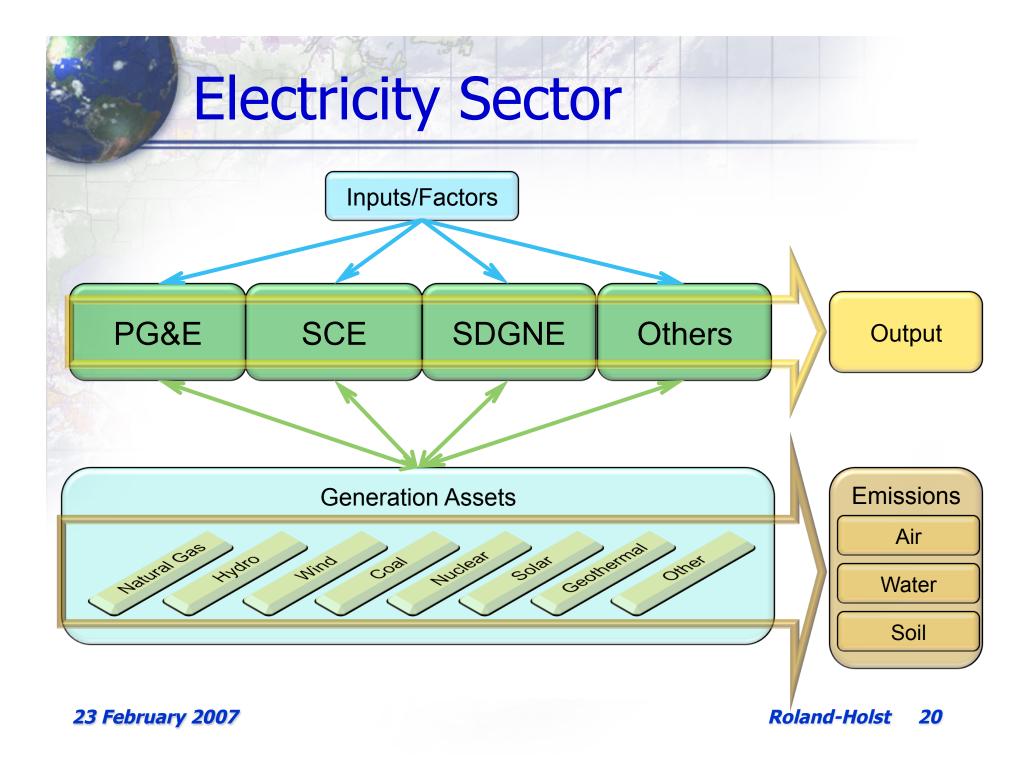
23 February 2007

Cement Sector Results

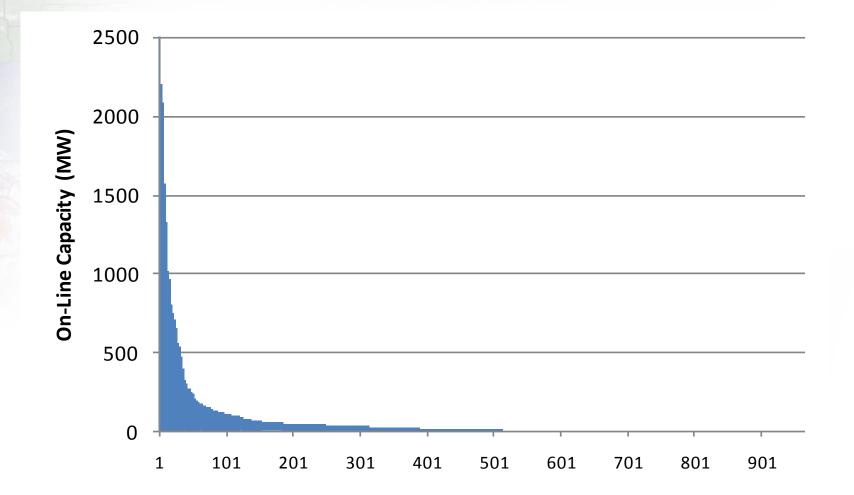
Only modest price increases, even in the 3 industry cap and trade scheme.

	CAT	G1CAT	G12CAT	G123CAT	G123RR	GAII
Emissions	-3%	-55%	-43%	-34%	-35%	-28%
Price	0%	6%	3%	2%	0%	-1%
Output	0%	-2%	-1%	-1%	0%	2%
Imports	0%	11%	5%	3%	0%	-1%
Exports	0%	-5%	-2%	-1%	0%	2%

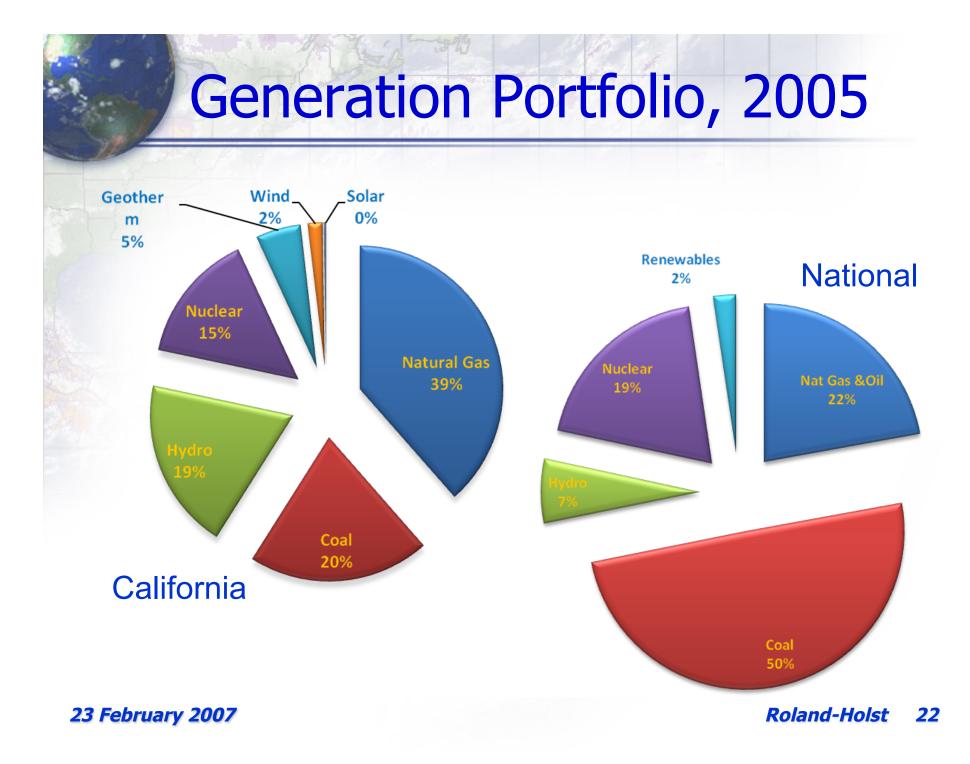
Our detailed review of the industry also indicates that the threat of migration is negligible.

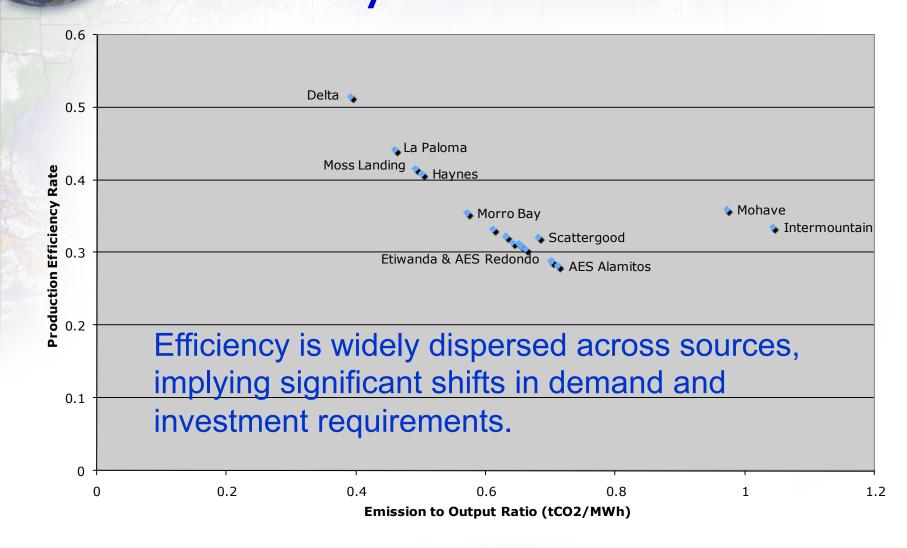

Electric Power

Distinctive features:


- 1. A portfolio of production technologies
- 2. Rigid output prices
- 3. Excess capacity

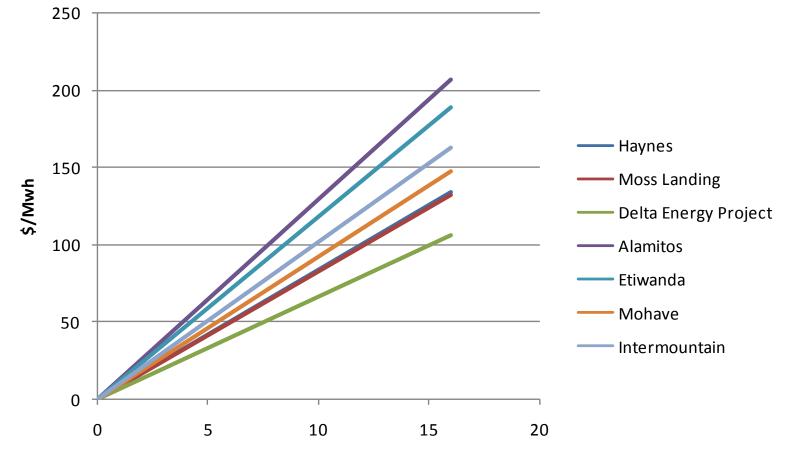
Modeling strategy:


- 1. Fixed price, demand-driven market
- 2. Producers choose:
 - 1. Short run: capacity utilization rate
 - 2. Long run: Capacity (contracts, investment)


Size Distribution of Electric Power Facilities

23 February 2007

Electric Power: Emission Efficiency


23 February 2007

Emissions, Efficiency, and Competitiveness by Plant

	Tons		Competitiveness
Plant	CO2/MWH	Efficiency	Index
Delta Energy	.39	.52	1.32
La Poloma	.46	.44	.97
Moss Landing	.49	.42	.85
Haynes	.50	.41	.82
Morro Bay	.57	.36	.62
Coolwater	.61	.33	.55
Ormond Beach	.63	.32	.51
AES Huntington	.64	.31	.49
Pittsburg	.65	.31	.48
High Desert	.65	.31	.47
Scattergood	.68	.32	.47
Cabrillo/Encina Power	.66	.31	.46
AES Redondo	.70	.29	.41
Etiwanda	.70	.29	.41
AES Alamitos	.71	.28	.40
Mohave*	.97	.36	.37
Intermountain*	1.04	.34	.32

23 February 2007

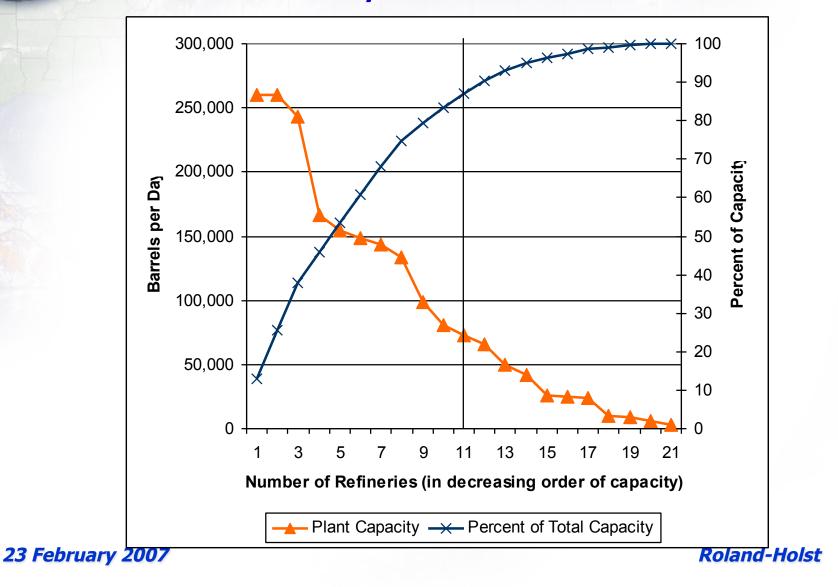
Estimated Marginal Cost with Respect to Fuel Prices

Price of Fuel (\$/mmBtu)

23 February 2007

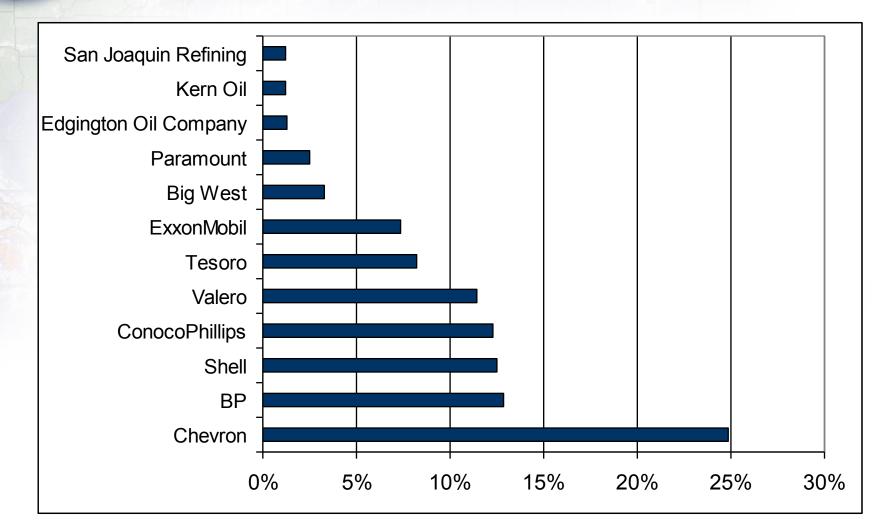
Electric Power

Potentially significant price increases.


	CAT	G1CAT	G12CAT	G123CAT	G123RR	GAII
Emissions	0%	-51%	-39%	-30%	-32%	-25%
Price	0%	20%	9%	5%	1%	-1%
Output	0%	-8%	-4%	-2%	0%	2%
Imports	0%	11%	5%	3%	1%	0%

Likely to make significant adjustments in its generation portfolio over the next decade.

Because the working life of these capital goods spans several decades, these adjustments will establish new baselines for emission intensity and accelerate the need for future efficiency improvements.


23 February 2007

Oil Refining Capacity in California, 2006

27

Top Refiners in California, Percent of State Production

23 February 2007

Petroleum Refining

Moderate price effects, but we need much better cost data.

	CAT	G1CAT	G12CAT	G123CAT	G123RR	GAII
Emissions	0%	-46%	-36%	-28%	-30%	-23%
Price	0%	6%	3%	2%	1%	-2%
Output	0%	-2%	-1%	-1%	0%	2%
Imports	0%	3%	1%	1%	1%	0%
Exports	0%	-5%	-2%	-1%	-1%	2%

Significant opportunities for process innovation to achieve higher efficiency levels in this sector, although restrictions on new capacity development may retard this process.

23 February 2007

Extensions

- More detailed cost data.
- Mechanism Design: Testing detailed Cap and Trade characteristics.
- A larger set of climate action policies: update CAT estimates.
- Mobile sources: too important to omit?
- Location/GIS

The Next Step: Mechanism Design

- 1. Recognition which emissions?
 - 1. Legacy emissions
 - 2. Existing in-state emissions
 - 3. Embodied emissions
 - 4. Remote emissions
- 2. Coverage who is included?
- 3. Allocation property rights
- 4. Trading mechanisms and incentives

Scope:

There are two components to the scope of a cap and trade scheme: Which emissions and which entities are to be covered by the policy.

The first of these is self-evident, and depends on the target for environmental mitigation (GHG, toxics, particulates, etc.).

In the second category, there are many practical issues of monitoring, regulation, and incentives. A basic distinction is usually made between upstream (resource oriented), and downstream (end use) entities. For example, to manage carbon emissions, one could regulate fuel producers or consumers.

Allocation:

This is the rule by which property rights are assigned. For example, in a cap and trade scheme, emission rights are usually a privately tradable financial asset. How these are allocated policy inception obviously influences private economic behaviour.

Banking:

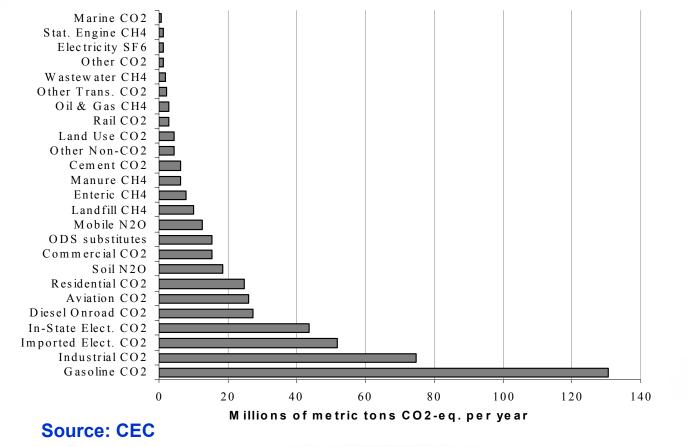
This term refers to the potential for inter-temporal transfer of pollution rights. In an uncertain and cyclical economic environment, banking can improve efficiency.

Safety Valves:

These mechanisms permit conditional and temporary flexibility in emission constraints (caps).

Understandably, they have complex behavioral properties, including risks of moral hazard and market manipulation, but they can also improve prospects for policy adoption and sustainability.

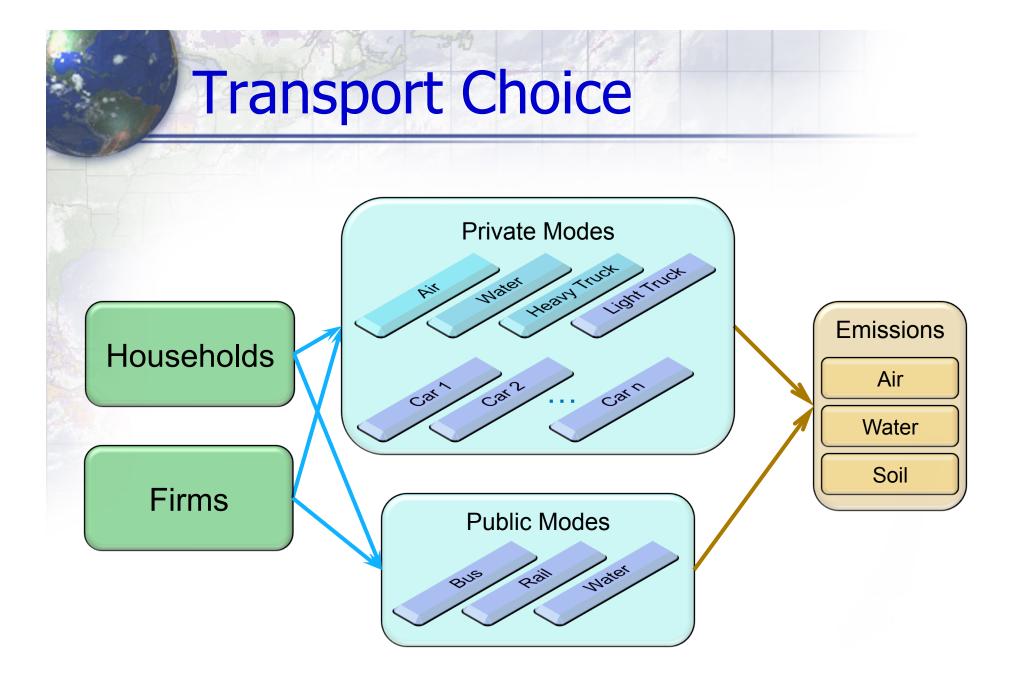
Linkage:


This term refers to interactions between different policies, either in different places or contexts. Beware of the "spaghetti bowl"

Justice:

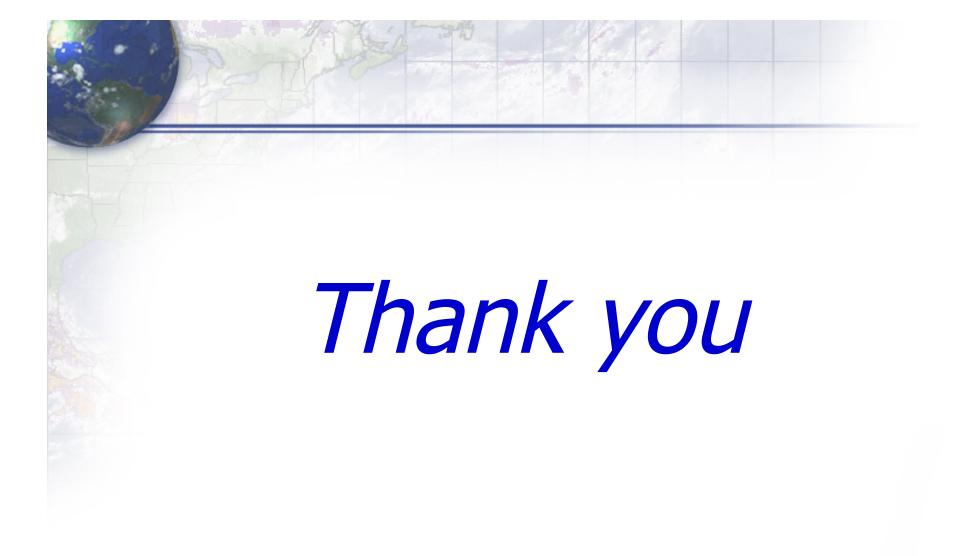
Policies toward the economy and environment can have complex welfare implications and should be designed to be equitable.

Scope of Coverage


The focus on stationary sources, and among these more concentrated emitting industries

23 February 2007

Transportation Demand


- The transport sector accounts for up to 48% of California C02 emissions
- To elucidate the path to our emission goals, patterns of vehicle use and adoption need to be better understood
- We are currently working to estimate demand systems that take explicit account of public/private modal choice and a larger universe of vehicle alternatives.

Innovation, Efficiency, Growth

The Growth-Environment tradeoff is a fallacy, and in California we can prove this.

- California is the world's premiere innovation economy.
- Efficiency is a potent stimulus for economic growth.
- Energy, transportation, and others can join IT, Biotech, and California's knowledgeintensive state industries to establish global standards for more sustainable economic growth.

23 February 2007